2x^2-5+1=3

Simple and best practice solution for 2x^2-5+1=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-5+1=3 equation:



2x^2-5+1=3
We move all terms to the left:
2x^2-5+1-(3)=0
We add all the numbers together, and all the variables
2x^2-7=0
a = 2; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·2·(-7)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*2}=\frac{0-2\sqrt{14}}{4} =-\frac{2\sqrt{14}}{4} =-\frac{\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*2}=\frac{0+2\sqrt{14}}{4} =\frac{2\sqrt{14}}{4} =\frac{\sqrt{14}}{2} $

See similar equations:

| 6(8r+6)+5=-295 | | 20x^2-20x+140=0 | | (2x+18)+(x+12)=180 | | y/9-9=4 | | (2x-5)x=3 | | 5/r=9/10 | | 3y=44-5 | | (180-x)+6=4(90-x) | | y=−2−3 | | 1=18x | | x=−2−3 | | (3x)-(9x)+6=20-(3x)+(4x) | | y=−2y−3 | | -4(7x+3)=156 | | 6(-1+x)=2(x+3) | | 2(160+9x)=212+9x | | -7-8a+8a=-7 | | (2x+10)=52 | | 4(5+2x)=4(16+x) | | 130=9x+13 | | -5n+7-7n=-17 | | 2(-31+x)=2(-19-x) | | 82+d/2=129 | | (7x)+5=(12x)-10 | | 2(13+5y)=2(77+y) | | 2x+3=52-5x | | 1,25t°4,1=0 | | 7n^2-40n-12=0 | | 2(28-y)=-3y+28 | | 2(-5+x)=2(5-x) | | 6x+4x=3x+6 | | 12b=6b-6 |

Equations solver categories